546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

Throughput Assurance for Multiple
Body Sensor Networks

Zhen Ren, Xin Qi, Gang Zhou, Senior Member, IEEE,
Haining Wang, Senior Member, IEEE, and David T. Nguyen

Abstract—Existing research has demonstrated that inter-body sensor network (inter-BSN) information sharing among coexisting
BSNs can enhance applications’ performance and save energy. However, how to achieve effective inter-BSN information sharing
through wireless communication is a challenging task. On one hand, a BSN should be able to discover neighboring BSNs and establish
inter-BSN links with quality of service (QoS) assurances. On the other hand, a BSN should be able to prevent the QoS of intra- and
inter-BSN links from being degraded by multiple BSNs’ mutual interference. In this paper, we propose BuddyQoS, a framework that
provides network throughput assurances for coexisting and shared buddy BSNs. In particular, BuddyQoS accurately estimates and
adaptively schedules wireless resources to meet the throughput requirements of all inter- and intra-BSN links. Our trace-driven
experiment results demonstrate that BuddyQoS outperforms the default CSMA solution in the standard TinyOS-2.x releases in terms of

providing throughput assurances.

Index Terms—Body sensor network, protocol design, quality of service, resource management

1 INTRODUCTION

body sensor network (BSN) consists of a group of

wireless on-body sensor nodes, each of which is
equipped with a set of low-power sensors. Data collected
from sensors is transmitted to an aggregator (e.g., a PC or a
smartphone) and then is either analyzed by the aggregator
or reliably delivered to a data center (e.g., a hospital) for
future analysis. Being portable, BSN enables a wide range
of human-centric applications, including activity recogni-
tion [1], smart healthcare [2], assisted living [3], athletic per-
formance evaluation [4], and interactive controls [5].

It has been reported that group activities take a large
part of human daily activities [6]. This fact of human
behavior indicates a large chance of the BSNs that sup-
port human-centric applications coexisting within the
communication range of each other. For example, a BSN
that supports athletic performance evaluation application
always has neighboring BSNs, because the athletes usu-
ally train and live together [4]. Also, a BSN that supports
smart healthcare and assisted living applications always
coexists with other BSNs, because it is not uncommon for
old people to live as a group in a retirement community
[2], [3].

Existing research has demonstrated that when multiple
BSNis coexist, inter-BSN information sharing results in both

e Z.Renis with Synopsys, Inc., Durham, NC.
E-mail: zhen.ren@synopsys.com.

o X. Qi, G. Zhou, and D.T. Nguyen are with the Department of Computer
Science, College of William and Mary, Williamsburg, VA.
E-mail: {xqi, gzhou, dnguyen @cs.wm.edu.

o H. Wang is with the University of Delaware, Newark, DE, the Department of
Electrical and Computer Engineering. E-mail: hnw@udel.edu.

Manuscript received 19 Apr. 2014; revised 21 Feb. 2015; accepted 24 Feb.
2015. Date of publication 3 Mar. 2015; date of current version 20 Jan. 2016.
Recommended for acceptance by Y. Wang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2015.2408611

application performance enhancement and energy saving.
For example, CoMon [6] demonstrates that sensors in a BSN
can be shared with other BSNs and redundant sensors can
be turned off to save energy. Moreover, inter-BSN sensing
data sharing not only reduces energy overhead, but also
enhances application performance such as activity recogni-
tion accuracy [7].

In a similar fashion to stand-alone BSNs with human-
centric applications performing real-time monitoring, the
requirements of stringent network throughput guaran-
tees are also placed on the BSNs that share sensing data.
For sensing data that is not shared, the same throughput
requirements still hold to ensure application fidelities.
For example, the EEG headset used by NeuroPhone [5]
generates data at the rate of 64 Kbps. Such data needs to
be delivered from the wireless EEG headset to its corre-
sponding aggregator with throughput of 64 Kbps, so
that the online facial expression and neuro-activity can
be captured in a timely manner. For shared sensing data,
same data is required by more than one BSNs with same
throughput requirements, but different communication
patterns need to be taken into consideration when the
data is delivered.

Considering the aforementioned benefits and stringent
throughput requirements, two research questions exist for
sharing information among the BSNs participating in the
sensors sharing framework (coexisting BSNs). First, how to
accurately estimate wireless resources to decide whether the
throughput requirement of a link can be guaranteed or not.
By answering this question, we can set rules to determine
whether a link should be established or not. Second, how to
adaptively allocate wireless resources so as to meet through-
put requirements for both inter- and intra-BSN links in the
presence of mutual interference from coexisting BSNs. By
answering this question, we can provide throughput assur-
ances for the upper applications.

1045-9219 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REN ET AL.: THROUGHPUT ASSURANCE FOR MULTIPLE BODY SENSOR NETWORKS 547

In this paper, we propose BuddyQoS, a framework that
provides network throughput assurances among coexisting
and shared buddy BSNs. We define a buddy BSN as the BSN
worn by a family member, a friend, or a colleague, who can
be trusted. In this way, we assume buddy BSNs can be
trusted and only focus on how to provide network through-
put assurances for them. Note that existing privacy research
[8] can be also integrated into our solution to protect human
privacy if needed.

Some existing efforts [9], [10] have been done for pro-
viding user-requested communication QoS in a single BSN.
However, how to guarantee communication QoS for multi-
ple BSNs has not yet been studied. Some works, such as
[11], support information sharing among sensor networks.
Other works, such as BikeNet [12], Bubble-sensing [13],
and CaliBree [14], propose new applications that leverage
people rendezvous [15] and exploit data collected from dif-
ferent people’s devices. However, none of them provides
communication QoS assurances for information sharing.
Human mobility has also been modeled for analyzing the
inter-contact time of different individuals [16], [17], [18],
[19], [20]. These efforts aim to predict when devices carried
by different people will be in the range of each other for
communication. However, they assume perfect communi-
cation among the devices without considering wireless
interference. Thus, they cannot provide any communica-
tion QoS guarantee.

The main contributions of BuddyQoS are summarized as
follows:

e As far as we know, BuddyQoS is the first framework
that guarantees network throughput among coexist-
ing and shared buddy BSNs, even though some QoS
studies exist for individual BSNs in literature.

e BuddyQoS enables neighboring buddy BSNs to dis-
cover each other and share sensing data by establish-
ing inter-BSN links. It also adaptively schedules
available wireless resources to meet the throughput
requirements from the upper applications for both
intra- and inter-BSN data communication.

e BuddyQoS is implemented in TinyOS-2.x with nesC.
Trace data from TelosB sensor motes is collected and
input to TOSSIM for simulation. Our performance
evaluation demonstrates that BuddyQoS notably
outperforms the default CSMA solution in standard
TinyOS-2.x release.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 presents the
overview of BuddyQoS, with its individual modules further
explained in later Sections: the Hybrid MAC in Section 4,
the Admission Controller and the Resource Scheduler in
Section 5, and the Buddy Management in Section 6. Section 7
evaluates the performance of BuddyQoS, and finally
Section 9 concludes the paper.

2 RELATED WORK

Body sensor networks can enable novel applications. For
instance, the authors in [21] explored ways to efficiently sup-
port social sensing applications. The work saves sensing
power by offloading sensing tasks to nearby fixed sensors.
Other researchers [22] attempted to apply BSNs in the field of

mobile cloud computing. Their effort saves smartphone
energy by sharing neighboring phone data via backend serv-
ers. BSNs promise novel uses in healthcare, fitness, and enter-
tainment [23], but research must address various obstacles. In
literature, some efforts have been proposed to ensure com-
munication QoS for an isolated BSN. For example, BodyQoS
[9] is designed to ensure user-requested throughput for a
BSN, while BodyT2 [10] is proposed to ensure both through-
put and time delay requirements for a BSN.

Some works are proposed for multiple concurrent appli-
cations to share sensors within a sensor network. For exam-
ple, MetroSense [5] attempts to support multiple concurrent
applications to share distributed sensors in urban settings.
In contrast to MetroSense that provides sensor sharing
within a very large scale sensor network, BuddyQoS sup-
ports both intra- and inter-BSN sensor sharing in coexisting
and shared buddy BSNs with much smaller scales.

Other works leverage people rendezvous [15] and
enforce mobile applications to share data across mobile
devices carried by different people. For example, BikeNet
[12] is built for a cyclist community, within which cycling-
related data is collected to evaluate cyclists’ performance
and environment. Bubble-sensing [13] is an approach that
relies on people rendezvous to distribute sensing tasks
among sensors worn by different people and deliver the
required data back to the task initiator. CaliBree [14] is a dis-
tributed self-calibration approach for sensing devices. A
sensing device increases its sensing accuracy by collecting
the relative miscalibrations from other nearby sensing devi-
ces during opportunistic device rendezvous. In contrast to
BuddyQoS, none of these works considers providing com-
munication QoS for information sharing.

There are also existing efforts that model human mobility.
For example, Srinivasa et al. proposed CREST [19] to esti-
mate the remaining time for the next people rendezvous
using conditional residual time. Rhee et al. proposed trun-
cated Levy walk (TLW) [16] and Lee et al. proposed self-
similar least action walk (SLAW) [17] to produce synthetic
walk traces based on human mobility features. With the
human mobility models, people rendezvous becomes pre-
dictable. All mobile systems sharing information with others
can leverage these existing models to enhance system perfor-
mance. However, these works assume that data can be for-
warded successfully once the sensor nodes are close to each
other. In this paper, we focus on the communication quality
issue, which is not addressed by these previous works.

With a solid number of platforms for sharing sensing
data in wireless BSNs, a few researchers turn their attention
to the QoS of such networks. In particular, they consider
inter-network interference and search for ways to mitigate
such interference. Rout and Das [24] indicated the necessity
for interference immunity in health monitoring, and intro-
duced an approach that mitigated interference using modi-
fied and modulated hermit pulses. Others focus their efforts
on ultra-wideband interference mitigation [25], [26], [27],
[28]. An interesting Clique-based scheduling algorithm is
introduced in [29], where the sensors are clustered into dif-
ferent groups to avoid interference. Zhang et al. [30] pre-
sented an intriguing method, which suggested to consider
the social nature of wireless body area networks (WBANSs).
In particular, they proposed to mitigate the communication

548 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

interference based on social interactions of the subjects car-
rying WBANS. In contrast, we propose a framework that
guarantees network throughput among coexisting and
shared buddy BSNs. Our solution enables neighboring
buddy BSNs to discover each other and share sensing data
by establishing inter-BSN links.

Finally, the IEEE 802.15 Task Group 6 has been develop-
ing a communication standard named IEEE 802.15.6 to serve
a variety of Body Area Network applications. However, the
proposal has been long circulating (79 circulations as of now)
with mixed approval rates [31]. Additionally, as indicated in
several studies [32], [33], the technology has a limited sup-
port of medical systems, such as patient monitoring systems
that require reliable throughput assurance for monitoring
patient life functions. Timmons et al. [34] also demonstrated
undesirably high power consumption of IEEE 802.15.6 (25.6-
33.2 percent higher than their baseline framework). IEEE
802.15.6 adopts the Impulse Radio Ultra-Wideband to physi-
cally support the coexistence of multiple BSNs [35]. We
believe that once IEEE 802.15.6 becomes a mature standard
widely accepted across academia and industry, it will be
interesting to develop solutions with flavors of IEEE
802.15.6. We reserve that therefore for our future work.

3 BubDYQOS OVERVIEW

In this paper, we propose BuddyQoS, a QoS solution pro-
viding throughput assurances for coexisting and shared
buddy BSNss. In this section, we present BuddyQoS’s com-
ponents in the top-down order.

BuddyQoS performs sensor sharing coordination to sup-
port sensor sharing across coexisting BSNs. Applications in
a BSN decide whether to share sensors with or request sen-
sors from neighboring buddy BSNs. When BuddyQoS noti-
fies existing applications of a newly detected neighboring
BSN, the applications estimate whether they can benefit or
benefit from this new BSN through sharing sensors. Existing
methods (such as [6]) of benefit-cost analysis for sensor
sharing can be adopted by applications to make such esti-
mations. If the applications decide to share sensors with or
use sensors from the new BSN, they send the sharing deci-
sions or requests to the BuddyQoS. BuddyQoS establishes
wireless connections with the new BSN for positive sensor
sharing decisions and approved sensor sharing requests.

After sensor sharing coordination, applications begin to
generate QoS requests with throughput requirements on
the usable sensor nodes in local and neighboring buddy
BSNs. They assign each QoS request a global priority, which
reflects how important the request is. When the available
wireless resource is not enough to satisfy all the QoS
requests, BuddyQoS uses the priorities to decide which
requests are less important and rejects them.

Fig. 1 shows the architecture of BuddyQoS, which con-
sists of four main components: Buddy Management,
Admission Controller, Resource Scheduler, and Hybrid
MAC. Additionally, there are three flows passing through
the components. They are application data flow, local BSN
management flow and buddy BSN management flow.

The Buddy Management on aggregator handles manage-
ment messages from neighboring buddy BSNs and main-
tains their information. With the information of neighboring

Sensor Nodes

Aggregator

\ APP \

T =

Data flow

_ >

Local BSN
Management
flow

Hybrid MAC) (Hybrid MAC) """"""""""""" >

A

! < I Buddy BSN
" < 1 Management
i a

¢ & |

‘ PHY ‘ ‘ PHY ‘ fow

Slave Resource
Scheduler

Fig. 1. BuddyQoS architecture.

buddy BSNs, it performs neighbor discovery and sensor
sharing coordination. Also, it provides resource schedules
from neighboring buddy BSNs for the Admission Controller
to make admission decisions.

The Admission Controller on aggregator is responsible
for making admission decisions for QoS requests with
throughput requirements. When applications from local
and neighboring buddy BSNs send throughput require-
ments on local sensor nodes, it estimates the resource
needed to ensure the throughput requirements. In addition,
it obtains the resource schedules of neighboring buddy
BSNss from the Buddy Management, which allows it to fur-
ther estimate the total resource needed to satisfy the
throughput requirements on the sensor nodes of all BSNs.
If the available resource is less than the total resource
needed, the Admission Controller rejects some low priority
QoS requests. Otherwise, all QoS requests are accepted and
maintained in a list, which is then outputted to the Resource
Scheduler. The admission decisions are returned to the
applications, which send out the QoS requests.

The Resource Scheduler on aggregator collaborates with
the Slave Resource Scheduler on sensor nodes to schedule
resources for intra- and inter-BSN communication. Particu-
larly, the Resource Scheduler receives a list of admitted QoS
requests with different throughput requirements on local
sensor nodes from the Admission Controller and other
BSNs” management information from the Buddy Manage-
ment. Then, it computes a TDMA schedule for intra- and
inter-BSN communication and enforces the schedule on
local aggregator. The Slave Resource Scheduler receives the
schedule and enforces the schedule on sensor nodes.

The Hybrid MAC sits on both aggregator and sensor
nodes and is above the PHY layer. The Hybrid MAC is
responsible for transmitting and receiving both data packets
and management messages from the upper layers. Moti-
vated by [36], we design the Hybrid MAC to combine the
advantages of TDMA, which is good for resource estima-
tion, and CSMA, which is flexible for scheduling.

4 BubpbpyQoS HyBRID MAC

We design BuddyQoS to adopt a hybrid MAC protocol that
combines the advantages of both CSMA and TDMA for
media access with the following two considerations. First,
wireless resource scheduling is a natural way to handle the

REN ET AL.: THROUGHPUT ASSURANCE FOR MULTIPLE BODY SENSOR NETWORKS 549

Slots allocated to a Transmitter

— Tn b Ta > T

Fig. 2. Interval T divided into two periods.

intricate intra- and inter-BSN communication. With TDMA,
BuddyQoS can make a communication schedule through
estimating the wireless resource usage of each QoS require-
ment. Second, human mobility results in high dynamics in
available wireless resources of coexisting BSNs. Thus, a con-
tention scheme of CSMA is desired for each BSN to make
full use of available resources. Although some existing
works such as Z-MAC [36] and Funneling-MAC [37]
already propose the idea of combining CSMA and TDMA,
our hybrid MAC protocol is different because it is a natural
design choice that specifically fits the scenario of coexisting
and shared BSNs, rather than ad-hoc deployment of multi-
hop wireless sensor networks.

In the Hybrid MAC, time is divided into slots. We assume
that all aggregators and sensor nodes are synchronized,
although our performance evaluation demonstrates that our
design is robust to tolerate synchronization errors to some
extent. On aggregators and sensor nodes, each packet is sent
using a single time slot. When a transmitter has a packet to
send, it first backs off some time before sensing the channel.
If the channel is clear, the packet is sent out. When multiple
transmitters want to access the same time slot, one of them
can be assigned as the “owner”, which accesses the slot with
the minimum backoff Tj,c;nsin. Other transmitters randomly
back off between the minimum and maximum backoffs,
(Tvackntin, Thackitaz)- Here the minimum backoff, Tjuexasin, can
be set to tolerate time synchronize errors, and the maximum
backoff, Ty,cinaz, affects time slot length. This contention
scheme allows non-owners to utilize a time slot when the
slot owner has no packet to send. It also allows non-owners
to set their backoff lengths for slot competition based on their
access priorities. For example, a low priority transmitter
should get a longer backoff length.

5 ADMISSION CONTROLLER AND RESOURCE
SCHEDULER

In BuddyQoS, the Admission Controller and Resource
Scheduler are responsible for providing throughput assur-
ances for communication in coexisting and shared BSNs. In
the rest of this section, we first present a communication
paradigm that dampens ACK implosion. Then, we demon-
strate how to estimate the wireless resources needed to sat-
isfy throughput requirements within the paradigm. Finally,
we describe how the Admission Controller makes admis-
sion decisions and how the Resource Scheduler schedules
inter- and intra-BSN communication based on the resource
usage estimation.

5.1 Communication Paradigm for Shared BSNs

In coexisting and shared BSNs, a data packet from a sensor
node in a BSN could have multiple receivers. For example,

Data packet SNACK from
from transmitter i; receiver j€ Ji={j1, jz,..}
1! Trans. Retrans Retrans

Fig. 3. Transmitter i’s data transmission with SNACKSs.

the receivers may be the local aggregator and some aggre-
gators from neighboring buddy BSNs. A receiver uses an
ACK to acknowledge each received packet, so that the
transmitter can infer a packet loss by an ACK timer and
retransmit the lost packet. When multiple receivers receive
the same packets, all of them will send ACKs to the same
transmitter, and the large number of ACKs may over-
whelm the transmitter. There has already been extensive
studies on alleviating the “ACK implosion” problem in
building reliable broadcast protocols [38], [39]. To dampen
ACK implosion, BuddyQoS adopts the selective NACK
(SNACK) mechanism that is similar to the TCP acknowl-
edgment mechanism in [40].

In our communication paradigm, a time interval contains
two periods (See Fig. 2). The first period contains 7}, slots
and is used for aggregators to broadcast management mes-
sages. The second period contains Tj slots and is used for
data delivery. Technically, all receivers (aggregators) are
informed of the schedule in advance, and hence know the
number of data packets to receive from a transmitter (sensor
node) in a time interval. In run-time, each receiver uses a bit
vector to compactly store the sequence numbers of lost
packets and sends an SNACK that contains the bit vector to
notify the transmitter of lost packets.

Fig. 3 depicts an example of a transmitter, say 7, transmit-
ting data packets and SNACKSs during the time slots allocated
for it in a time interval. The first several slots are allocated for
transmitter ¢ to send its data packets. The following slot is
allocated for the receivers to send SNACKSs. Since the SNACK
slot is not pre-allocated, so any receiver can contend for the
slot. After an SNACK from one receiver, say ji, is successfully
received, the following slots are allocated for the transmitter
to retransmit the lost packets. The other receivers overhear
the SNACK sent by receiver j; and suspend their SNACKSs.
After retransmissions, if any receiver still has lost packets, it
will contend for the next SNACK slot.

In the paradigm, we further introduce SNACK suppres-
sion to reduce the number of SNACKSs. In SNACK suppres-
sion, a receiver can overhear the SNACKSs sent from other
receivers. To reduce the number of SNACKSs, a receiver sup-
presses its own SNACK when it finds that the overheard
SNACK already contains the sequence numbers of its own
lost packets. Fig. 4 exemplifies an SNACK suppression,
where two receivers j; and j, needs to receive packets from
transmitter 7. After the first batch of transmissions, receiver
J1 loses the second and fourth packets, and receiver j; loses
the second packet. Receiver j; overhears j;’s SNACK and
finds out that the lost packets reported by j; already contain
its all lost packets. Thus, j» suppresses its own SNACK
because it receives its all lost packets during the following
retransmissions that is triggered by j;’s SNACK. In this
example, an SNACK is saved.

550 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

Transmitter i

i Py, P,
/_ Data Packets
]

KK
Gl

O

1! Transmission
A

overhear SNACK

Surpressed
SNACK

[~]

A 4

+

Fig. 4. SNACK suppression example.

4

Retransmission

To encourage SNACK suppression, a receiver with a
higher packet loss rate should send its SNACK before other
receivers with lower packet loss rates. In the Hybrid MAC,
each receiver sets its backoff time for SNACK slot conten-
tion according to its packet loss rate. The higher the packet
loss rate, the shorter the backoff time.

5.2 Resource Estimation for Shared BSNs

In the aforementioned communication paradigm, wireless
resources are the time slots for sending data packets and
SNACKs. In BuddyQoS, the Admission Controller and
Resource Scheduler estimate the resource for management
information exchange and data delivery among coexisting
BSNs.

5.2.1 Resource Estimation for Management

Information Exchange

During each T, period, every aggregator sends one man-
agement message that contains its inter- and intra-BSN
management information. The number of time slots needed
in 7T;,, period depends on the number of neighboring buddy
BSNs. At the beginning, T), is set as Tj,;. Then, in every
time interval, 7T}, is reevaluated with the number of neigh-
boring buddy BSNs, which is obtained from the Buddy

Management. If the current 7, minus the number of neigh-
boring buddy BSNs is less than a threshold AT, T}, is reset
as T,,+AT. However, if the current 7}, minus the number of
neighboring buddy BSNs is larger than 2AT, T, is reset as
T,,—AT. AT is a system parameter, which is used to reserve
management slots for incoming new buddy BSNs. During
system configuration, the value of AT is set with respect to
the dynamic level of coexisting and shared BSNs.

5.2.2 Resource Estimation for Data Delivery

The BuddyQoS of each BSN estimates the number of time
slots for local sensor nodes to deliver data packets, retrans-
mitted data packets, and SNACKs during each T, period.
For a sensor node, the number of data packets to be trans-
mitted depends on the throughput requirement on that
node. The number of retransmitted data packets and
SNACKSs depends on the packet loss rates between the node
and its receivers. We list and explain the following denota-
tions for resource estimation:

b;: the highest throughput requirement on node i’s;
Spie: the effective payload size of each data packet;
¢;;: the packet loss rate of receiver j from transmitter
2

e R: the maximum number of (re)transmissions for
sending a data packet. After R times of (re)transmis-
sions, failure will be returned to the upper layer and
the data packet will be dropped. Otherwise, keeping
too much data in the buffer results in buffer over-
flow. Also, it is meaningless to keep old data for real-
time monitoring applications;

e J;: the IDs of the receivers that listen to node 1,
Ji = {1, jo,...}. Thus, the cardinality of set J; is the
number of ¢’s receivers;

e D;: the number of data packets that needs to be
delivered in each interval T from transmitter ¢ to sat-

bixTr.

Spkt] !

e FE(K): K is the number of (re)transmissions for a suc-
cessful packet delivery to all receivers or a packet
delivery failure after R (re)transmissions. E(K)
stands for the expected number of (re)transmissions;

e [E(Nj): Njis the number of SNACKSs from receiver j.
E(N;) stands for the expected number of SNACKs
from j.

Among the above parameters, the throughput require-
ment b; is from applications. S,;; and R are set during
system configuration. The packet loss rate ¢;; is the expo-
nentially weighted moving average over the current and
history measurements with delay factor a:

isfy throughput requirement b;. Thus, D; = [

qij = & X Gij_history + (1 70‘) X qij_current -

Then, the number of slots allocated for sensor node i to
deliver its data packets equals the number of data packets
needs to be delivered multiplying the expected number of
transmissions for each data packet, i.e. D; x E(K). The num-
ber of slots for all receivers in J; to deliver SNACKSs equals
the sum of the expected numbers of SNACKs from all
receivers, i.e. 3. ; E(N;). Details for computing F(K) and
E(N;) are explained as follows.

REN ET AL.: THROUGHPUT ASSURANCE FOR MULTIPLE BODY SENSOR NETWORKS 551

The expected number of data packet (re)transmissions
E(K) is computed using Equations 1~4. Firstly, according
to the definition of F(K) in Equation (1), it is necessary to
compute Pr(K =k) for each ke[l,R]. Here, Pr(K =k)
denotes the probability for a successful packet delivery to
all receivers after k (re)transmissions or a packet delivery
failure after R (re)transmissions

E(K) = i lex Pr(K = k). 1)

Pr(K = k) is computed using Equation (2), where Pr(K <
k) for each ke[l, R—1] is the probability of a data packet
delivery success or failure after less than or equal to & times

Pr(K < k) — Pr(K < k—1),

k<R,
P”(K:k):{uPr(KgR—n,

r=r @

To compute Pr(K < k), we further look into the number of
(re)transmissions needed for successfully delivering a
packet to each receiver j, which we denote as K; (j€J;).
Assume that packet loss of each receiver is independent,
then Pr(K <k) can be calculated using Pr(K; <k)s as
shown in Equation (3)

Pr(K <k) =[] Pr(K; <k M)

Jjedi

After that, for each receiver j, we use its packet loss rate g;;
to compute Pr(K; < k). It is easy to see that if a data packet
has been successfully delivered to receiver j after k (re)
transmissions, the first k (re)transmissions must have all
failed, with the probability of qf“] So Equation (4) is derived

Pr(K; <k)=1-d “)
Finally, to deliver data packets from the transmitter i while

ensuring throughput b;, the total number of slots needed
equals:

D; x E(K) = F) XTW <

ZH l—qu> (5)

=1 jeJ;

R—-1
N;j) =Y nx Pr(N;=n). (6)
n=1

The expected number of SNACKs from receiver j, E(N;), is
defined in Equation (6). Similar to the computation of E(K),
we first compute Pr(N; = n), the probability that receiver j
has (re)transmitted exactly n SNACKs for successfully
receiving all D; data packets, for each ne[l, R — 1] using
Equation (7)

Pr(N; < n)—Pr(N; < n-1),
P'"(NJ‘:"):{ 1 — Pr(N; < R-2),

In Equation (7), we calculate Pr(N; < n) using receiver j's
packet loss rate g;;. It is easy to see that when receiver j
sends more than n SNACKs for a data packet, the first n (re)
transmissions for the data packet must have failed, with the
probability of qf‘] So the probability that receiver j has sent

n<R-1,

n=R-1. ™

no more than n SNACKs for one data packet is 1 — ¢;}. Also,
if receiver j has sent out no more than n SNACKSs, it means
that each of the D; data packets must have failed for less
than n times. We assume that the loss of each packet is inde-
pendent. So, Equation (8) is derived

Pr(N; <n) = (1-q3)"". ®
In order to deliver D; data packets, the total number of slots
needed for sending SNACKSs from all receivers to transmit-

ter ¢ equals:
R— 2 _
ZE(N]) —Z< q” I)
7L:1
-2

jed; jed;
(1 —ay)

= Rx|Ji| =)

jed; n

k!

b 9

<.
Il
—

Note that Equation (8) does not consider the SNACK
suppression, because it would require extra information of
the correlation between the packet losses of different
receivers, which is too costly to obtain in real deployments.
We leave it as future work to find out a lightweight
real-time measurement of the packet loss correlations. How-
ever, the estimation according to Equation (8) is statistically
larger than or equal to the number of SNACK slots actually
used. Therefore, the resource allocated to each node is suffi-
cient to provide the statistical throughput required by the
applications. Equation (9) can be noticeably over-estimated
only in the extreme case, in which the packet loss ratio is
very high and all receivers are losing the packets. However
in those cases, the network resources are not sufficient to
provide the throughput guarantees even without over-esti-
mation. Finally, the total time slots allocated to transmitter 4
is the sum of Equations (5) and (9).

5.3 Admission Decisions

To make admission decisions, the Admission Controller in
each BSN estimates the number of time slots for manage-
ment message exchange as described in Section 5.2.1 and
time slots to satisfy the throughput requirements on local
nodes as described in Section 5.2.2. Meanwhile, the Admis-
sion Controller obtains the estimated number of time slots
needed by other buddy BSNs from the Buddy Management.
Then, the Admission Controller calculates the total number
of time slots needed by all BSNs, including local and neigh-
boring buddy BSNs.

Admission decisions are made based on whether the
total number of time slots is larger than 7j or not. If T} is
larger, all local throughput requirements, as well as other
buddy BSNs’ throughput requirements, can be accepted.
Otherwise, each aggregator makes an independent decision
to reject some of QoS requests with low priorities. The
Admission Controller keeps rejecting QoS requests with the
lowest priority until the throughput requirements of the
rest QoS requests can be met. Once the Admission Control-
ler finds that any local QoS request need to be rejected, it
notifies the corresponding application that the throughput
requirement cannot be satisfied. To the application, this
means that for one thing, its data stream will be only

552 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

delivered with best efforts, and for another, it can lower its
throughput requirement in order to be admitted. Finally,
the set of the accepted QoS requests on local sensor nodes
are passed to the Resource Scheduler.

5.4 Resource Scheduler

The Resource Scheduler in each BSN allocates time slots for
the aggregator to broadcast its management message in each
T, period and for local sensor nodes to deliver data packets
in each 7} period. In addition, the Resource Scheduler on the
aggregator and the Slave Resource Scheduler on each local
sensor node are responsible for enforcing the schedule.

The Buddy Management in each BSN maintains a buddy
list. During each 7, period, the BSN order of sending man-
agement messages is the same as the BSN order in the
buddy list. With the buddy list from the Buddy Manage-
ment, the Resource Scheduler in a BSN allocates a time slot
for local aggregator to send its management message.

During each T; period, the BSN order of delivering local
data is also the same as the BSN order in the buddy list. To
schedule local sensor node to deliver data, the Resource
Scheduler in a BSN first looks up the buddy list to find out
the schedules of other buddy BSNs. The Resource Sched-
uler adds up the number of time slots needed by the BSNs
before its local BSN in the buddy list and determines at
which time slot to start its local data packets delivery.
Then, with the list of admitted QoS requests from the
Admission Controller, the Resource Scheduler estimates
the number of time slots needed by each local node using
Equations (5) and (9) and allocates the time slots for local
sensor nodes to delivery data packets.

The Resource Scheduler and Slave Resource Scheduler in
each BSN enforce the schedules as follows. During each 7,
period, all aggregators and sensor nodes listen to all man-
agement messages. During each 7 period, each sensor
node delivers its data packets during its time slots following
the communication paradigm described in Section 5.1. Each
aggregator listens to the data packets sent during the time
slots allocated to its ‘interested’ sensor nodes, which could
be local or in other buddy BSNs.

6 BubDY MANAGEMENT DESIGN

The Buddy Management maintains the management infor-
mation of neighboring buddy BSNs in the form of three lists:
(1) buddy list, a list of buddy BSNs in the neighborhood;
(2) listen list, a list of sensors in other BSNs that local aggre-
gator listens to; and (3) share list, a list of BSNs whose
aggregators listen to local sensors. From the other BSNs’
management messages received during each 7;,, period, the
Buddy Management extracts the inter-BSN management
information to update the lists. The Admission Controller
and Resource Scheduler use this information to make admis-
sion decisions and resource schedules. Additionally, the
Buddy Management uses the management messages to per-
form neighbor discovery and sensor sharing coordination.

6.1 Neighbor Discovery

During each T,,, period, the Buddy Management determines
whether a buddy BSN entering and leaving neighborhood
and updates buddy list with the help of the Hybrid MAC.

At the very beginning, each BSN has no neighbors but
only itself in its buddy list, so it contends for the first slot in
T,, with some backoff. Here we use the aggregator’s ID as
its BSN’s ID. When a new BSN comes to the neighborhood
of BSN ji, say BSN js, both of them contend for the first slot.
If j; wins the 1 slot, then j; receives j;’s management mes-
sage and adds j; to its buddy list before itself and tries to
access the next management slot. Then, j; receives j;’s man-
agement message in the later slot and adds j, to its buddy
list after itself. In this way, the two BSNs discover each
other. From then on, the two coexisting BSNs allocate the
time slots to send their management messages as described
in Section 5.4.

In the Hybrid MAC, a BSN decides its backoff time
according to the length of the buddy sublist following itself.
To be precise, the more buddy BSNs following the BSN in
the buddy list, the shorter the backoff time for it to send its
management message. Thus, when a new BSN comes to the
neighborhood of multiple BSNs who already know each
other, it will fail to access the first several time slots in a 7T;,
period and hence transmit its management message after all
existing BSNs. When the aggregator in a BSN hears the
management message sent from a new BSN, its Buddy Man-
agement adds the new BSN to its buddy list. When an
aggregator has not been heard for several consecutive inter-
vals, it is considered leaving the neighborhood and hence
removed from all other BSNs” buddy lists.

When a BSN leaves its neighborhood, the neighbor dis-
covery process finds this out in several time intervals. If a
shared sensor is in the BSN that has left, no sensing data
from that sensor is received during the above time intervals.
However after that, another sensor from the existing BSN is
selected to replace the leaving sensor. Next, the existing
BSNis activate their own sensors, and list them in the broad-
casting message. Finally, an application picks a new sharing
sensor, and each BSN updates its listening lists to coordi-
nate sensor sharing again.

6.2 Sensor Sharing Coordination
The management message also includes the listen list and
the share list from the Buddy Management. Using these two
lists, the sensor sharing coordination is performed. During
this process, the listen list acts as a list of sensor sharing
requests, and the share list acts as a list of sensor sharing
decisions, answering to the sensor sharing requests. The
details of the sharing coordination are described as follows:
First, the Buddy Management in a BSN extracts the avail-
able sensors of other neighboring buddy BSNs from their
schedule in their management messages, and reports them
to the applications. Then, the applications decide whether
they can benefit from sharing the sensors of other neighbor-
ing buddy BSNs or not. If they have sensor share requests,
they send them to the Buddy Management. The sensors in
the share requests are then added to the listen list and sent
out in the management message. When the message is
received by the aggregators in other neighboring buddy
BSNs, each aggregator checks the listen list, extracts its local
sensors from the list, and sends them to the applications to
get sharing decisions. If the applications approve the
sensor sharing requests, the Buddy Management adds the

REN ET AL.: THROUGHPUT ASSURANCE FOR MULTIPLE BODY SENSOR NETWORKS 553

TABLE 1

System Parameter Configuration
Parameter Value
Backoff time range [ﬂ)ackﬂﬁ'nm ,Tbar:k]\rfn,:r} [03 ms, 2.44 ms]
Time length of a slot 5ms
Time length of interval T 1,000ms
Number of initial slots in 7}, period—Tj,;; 5 Slots
Number of reserved slots—AT 3 Slots
Data packet payload size—=S, 32 Bytes
Throughput requirement—b; on node 4 1.2kbps
Decay factor—o 0.5

approved sensors to the share list, which is then sent out in
the management message. Otherwise, it adds nothing to the
share list. In this way, the sensor sharing requests are
answered. When the Buddy Management in the BSN that
sends the requests receives the share decisions, it reports
the decisions to the corresponding applications.

When the Buddy Management finds a buddy BSN hav-
ing left the neighborhood, it removes the sharing relations
with that BSN from its share list and listen list. In addition,
it reports the loss of the corresponding sensors to the
applications.

7 PERFORMANCE EVALUATION

We evaluate BuddyQoS using trace-driven simulations. The
traces of noise and signal strength used in the simulation
are collected from a real office deployment, in which two
subjects wear BSNs and work in front of their computers,
sitting 2 meters apart and being back to back to each other.
Three sensor nodes are attached to the left chest, right wrist,
and right ankle of each subject. The aggregator is attached
to the left waist of each subject. Each BSN shares a local sen-
sor node with the other BSN. The Received signal strength
indicator (RSSI) readings are recorded for 5 minutes when
the sensor nodes communicate with the aggregators in both
noise and signal scenarios. The noise traces are used to gen-
erate noise between each node and its aggregator, following
the closest pattern matching (CPM) algorithm [18]. The sig-
nal strength traces are used directly in the simulation.

We implement BuddyQoS in TinyOS-2.x with NesC, and
simulations are run upon TOSSIM simulator [41]. We com-
pare BuddyQoS with the default CSMA solution in the stan-
dard TinyOS-2.x release. Three performance metrics are
evaluated: (1) throughput delivery percentage, which
equals the delivered throughput over the requested
throughput; (2) control overhead, which equals the number
of control packets, including SNACKs and management
messages, over the number of transmitted data packets; (3)
data packet transmission time, which is the time used to
transmit a data packet, including the retransmission time
and excluding the queuing time.

Table 1 lists the system parameter configurations used in
the simulations. The first three parameters are used by the
Hybrid MAC. In the default CSMA settings in TOSSIM, the
backoff time range is set as [0.3,9.78 ms]. We use a shorter
backoff time range of [0.3,2.44ms]. The short range is feasi-
ble since the Hybrid MAC has already avoided most of the
collisions through TDMA scheduling. In the simulations,

[BIBuddyQos
[JDefault CSMA|

BSN1 BSN2

1
0.8]
0.6}
0.4
0.2]

0

Local Local Share

Delivered Throughput

Share
Transmitter Nodes

Fig. 5. Delivered throughput.

we deliberately introduce <0.1 ms time difference for each
node’s clock to simulate the synchronization errors. The slot
length we set is the sum of the maximum backoff time and
the time used to transmit one packet containing 32 bytes
data payload. We set Tj,;; = 5 and AT = 3, since in our sim-
ulation the size of a typical neighborhood is not large at the
beginning and it’s not very likely that a lot of people join or
leave the group at the same time. The decay factor « is set to
0.5, giving equal weights to both the history and current
measured packet lose rates.

Through the simulations, we first compare the perfor-
mance between BuddyQoS and the default CSMA solu-
tion in TinyOS-2.x in the scenario of two coexisting
buddy BSNs. Then, we perform the same performance
comparison between the two solutions as the number of
buddy BSNs in the neighborhood increases from 2 to 4.
The new neighboring buddy BSNs is simulated by the
noise and signal strength traces collected from the afore-
mentioned real office environment. Identically, each simu-
lated BSN contains one aggregator and three sensor
nodes, and each BSN shares a local sensor node with
another buddy BSN. Each aggregator and node can hear
all other aggregators and nodes in the neighborhood. The
shared nodes are not on the same body position to make
the simulation settings realistic.

7.1 Performance Comparison in the Scenario

of Two Coexisting Buddy BSNs

First, we measure the throughput delivery percentages of
the BuddyQoS and CSMA solutions in the scenario of two
coexisting buddy BSNs. The results are demonstrated in
Fig. 5. For each communication connection between a sen-
sor node and an (local or buddy) aggregator, a group of
bar pairs show the average throughput delivery percen-
tages of BuddyQoS and the default CSMA solutions. The
error bars show the corresponding standard derivation.
For each solution, the simulation is run for 5 minutes. Four
groups of bar pairs are plotted for each BSN, with the first
three bar pairs illustrating the results for the communica-
tion connections between the three local nodes and local
aggregator in a BSN, and the last pair illustrating the
results for the communication connection between the
local shared node and aggregator in the other buddy BSN.
The results prove that our solution ensures 100 percent of
the required throughput, while the default solution only
delivers a portion of the required throughput. Especially,
on the shared nodes, the delivered throughput of the
default CSMA solution can be as bad as 70 percent of the
required throughput.

554 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

=3
=)
a
o

=3
o
a1
L

0.051F BSN1 BSN2
0.049

0.0471

#Control Packet Delivered per Data Packet Required

0.045!

Local Share Local Share

Transmitter Nodes

Fig. 6. Control overhead.

Then, we measure the control overhead of BuddyQoS,
which is generated by periodically broadcasting manage-
ment messages and SNACKs. As the aggregator in a BSN
sends one management message in each interval to all the
local sensor nodes, as well as the sensor nodes it shares from
other BSNs, the cost of management messages should be
average over these nodes. For example, in the scenario of
two coexisting buddy BSNs, one management message is
used by four nodes (three local nodes plus one shared node).
For each sensor node, we compute the control overhead as
{(the number of SNACKS it receives + the 1/4 share of the
management message)/the number of delivered data pack-
ets}. Fig. 6 plots the control overhead for each node in the
two neighboring buddy BSNs. The mean values of the con-
trol overheads are only around 0.05 with very small standard
deviation. The control overhead is low since BuddyQoS uses
SNACK and embraces the SNACK suppression mechanism.

Finally, we calculate the time used to transmit a data
packet, including the retransmission time and excluding
the queuing delay. Fig. 7 compares the data packet trans-
mission time of BuddyQoS with that of the default CSMA.
We observe that BuddyQoS uses only about 1/3 of the
transmission time of the default CSMA to send a data
packet. BuddyQoS has much higher transmission efficiency
because BuddyQoS adopts a hybrid MAC that combines
the advantages of both CSMA and TDMA. Particularly,
BuddyQoS reduces the number of retransmissions caused
by collisions. In addition, the adoption of selective NACKs
and their suppression also contributes to the lower trans-
mission cost of the paradigm.

7.2 Performance Comparisons in the Scenarios

of Multiple Coexisting Buddy BSNs
Fig. 8 plots the throughput delivery percentages in the sce-
narios of two, three, and four coexisting buddy BSNs. For

[BIBuddyQos

9000 [Cloefault CSMA
8000 BSN1 BSN2
g
£ 7000
5
2 6000
@
& 5000
]
< 4000
g
S 3000
o
S 2000

1000

Local Local Share

Share
Transmitter Nodes

Fig. 7. Data packet transmission time.

each scenario, the simulation runs for 5 minutes, and the
percentage of delivered throughput is measured every
10 seconds. Then, we plot the mean and standard deriva-
tion of the measured results for each node of each BSN
(three local sensor nodes and one sensor node shared
with another BSN).

Comparing our solution with the default CSMA solution,
we evidence that the CSMA solution is not able to ensure the
requested data throughput. The percentage of delivered
throughput under the CSMA solution varies on different
sensor nodes. For some of the sensor nodes, only about 70
percent of the data can be delivered. The standard derivation
of the delivered throughput is also large (nearly 10 percent),
implying that the links are unstable. However, BuddyQoS
ensures the applications’ throughput requirement on each
node, even when the number of buddy BSNs in the neighbor-
hood increases. Notably, BuddyQoS delivers 100 percent of
the required throughput with small standard derivation.

8 DiscussION

In this section, we discuss potential limitations of Buddy-
QoS and other related issues that may matter in practice.
In particular, we compare challenges of BSNs and tradi-
tional wireless networks. Next, we elaborate interference
among co-existing and shared BSNs. We also describe the
rationale behind the decision of adopting our proposed
sensing sharing strategy. Finally, privacy concerns of BSNs
are elaborated.

Media access control (MAC) for traditional wireless cel-
lular networks has been extensively studied in the research
community. Many researchers proposed modifications to
the original MAC in order to improve system performance
and reliability. Such hybrid MAC solutions [42], [43], [44],
[45], [46] for instance propose co-channel interference mod-
els, and devise methods based on MAC to reduce interfer-
ence. However, BSNs are in many aspects very much

[BuddyQos
[CIDefault CSMA|

BSN1 BSN2 BSN1

o
® =

o
ra

Delivered Throughput
Delivered Throughput

°
o

°
R

Share

Local Share 0 Local

Local

Share,
Transmitter Nodes

Fig. 8. Percentage of delivered throughput with increasing number of BSNs.

BSN2 BSN3 BSN1

Transmitter Nodes

[ElBuddyQos [EBuddyQos
[“IDefault CSMA| [“IDefault CSMA|

BSN2 BSN3 BSN4

T A (A

Delivered Throughput
o e o
5 o » -

e
)

" Local Share Local Share Local Share Local Share
Transmitter Nodes

Share Local Share

REN ET AL.: THROUGHPUT ASSURANCE FOR MULTIPLE BODY SENSOR NETWORKS 555

different from traditional wireless cellular networks. First,
BSN sensor nodes usually operate in a dense body area that
introduces many communication challenges [23], such as
body shadowing—the body’s line-of-sight absorption of RF
energy, which, coupled with movement, causes significant
and highly variable path loss. Second, such sensor nodes
require more careful power management policies due to
their low-power nature. Moreover, the communication
range of the nodes is much smaller than in traditional net-
works, and the communication is therefore more prone to
interference. In addition to these natural differences of our
hybrid MAC protocol tailored for BSNs, our proposed solu-
tion also strives to provide throughput assurances for coex-
isting and shared buddy BSNs. In particular, BuddyQoS
coordinates sensor sharing to support common sensor
usage among coexisting BSNs.

BSNs often suffer from interference due to their opera-
tion in the same vicinity with other BSNs. However, our
evaluation demonstrates that BuddyQoS can effectively mit-
igate this interference. As demonstrated in Section 7, the
transmission time is reduced by 2/3 compared to the default
CSMA, which is due to the fact that our framework elimi-
nates collisions that cause many retransmissions. This way
BuddyQoS mitigates the interference among co-existing
and shared BSNs.

In our BuddyQoS framework, we assume that an appli-
cation makes sensor sharing decisions based on its needs.
The needs are associated with the application level per-
formance, as opposed to the network level performance.
In addition, different applications may have different
such needs to serve their goals. For example, the CoMon
[6] ambience monitoring platform aims to save mobile
device energy through sensor sharing, while Remora [7]
resource sharing platform targets to improve activity rec-
ognition accuracy through sensor sharing. Therefore, it is
non-trivial to provide common ground for all applications
to carry out such sensor sharing decisions. The goal of
BuddyQoS is to give performance guarantees for sensor
sharing at the communication level. Our proposed frame-
work achieves its goal through a novel hybrid MAC pro-
tocol with interference reduction, and its evaluation
demonstrates that the framework outperforms the state-
of-the-art solution.

In many application scenarios, sensing data can be
shared among trusted parties without any privacy concerns,
such as fellow athletes, couples, or friends in a retirement
community. Some sensor data, such as data collected from
motion and environment sensors, can be shared with neigh-
bors in physical proximity as they are already able to physi-
cally see each other in motion. For those application
scenarios where privacy could become an issue, a BSN can
share only parts of its sensing data and allow users only
sharing their non-private information with a limited num-
ber of trustworthy parties.

9 CONCLUSION

When BSN users spend time with family, friends and col-
leagues, multiple BSNs usually coexist in the communica-
tion range of each other. In such scenarios, applications can
usually benefit from sensor sharing among BSNs. This

paper proposes the first QoS solution, BuddyQoS, to meet
application level throughput requirements for both inter-
and intra-BSN communications. BuddyQoS accurately esti-
mates wireless resource and adaptively allocates the
resource to multiple BSNs in order to achieve throughput
assurances. Through trace-driven simulation, we have dem-
onstrated that BuddyQoS notably outperforms the default
CSMA solution in standard TinyOS-2.x release with a small
cost. In the future, we will study how to provide both
throughput and time delay performance assurances for
coexisting and shared BSNs.

REFERENCES

[1] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, “PBN: Towards
practical activity recognition using smartphone-based body sen-
sor networks,” in Proc. 9th ACM Conf. Embedded Netw. Sensor Syst.,
2011, pp. 246-259.

[2] H.Huang, Y.Sun, Q. Yang, F. Zhang, X. Zhang, Y. Liu, J. Ren, and
F. Sierra, “Integrating neuromuscular and cyber systems for neu-
ral control of artificial legs,” in Proc. ACM/IEEE 1st Int. Conf.
Cyber-Phys. Syst., 2010, pp. 129-138.

[3] Q. Li,]J. A. Stankovic, M. Hanson, A. Barth, J. Lach, and G. Zhou,
“Accurate, fast fall detection using gyroscopes and accelerometer-
derived posture information,” in Proc. 6th Int. Workshop Wearable
Implantable Body Sensor Netw., 2009, pp. 138-143.

[4] M. Bachlin, K. Forster, and G. Troster, “SwimMaster: A wearable
assistant for swimmer,” in Proc. ACM 11th Int. Conf. Ubiquitous
Comput., 2009, pp. 215-224.

[5] A.T.Campbell, T. Choudhury, S. Hu, H. Lu, M. K. Mukerjee, M.
Rabbi, and R. D. S. Raizada, “NeuroPhone: Brain-mobile phone
interface using a wireless EEG headset,” in Proc. ACM SIGCOMM
Workshop Netw., Syst. Appl. Mobile Handhelds, 2010, pp. 3-8.

[6] Y. Lee Y.Ju, C. Min, S. Kang, I. Hwang, and J. Song, “CoMon:
Cooperative ambience monitoring platform with continuity and
benefit awareness,” in Proc. ACM 10th Int. Conf. Mobile Syst., Appl.
Services, 2012, pp. 43-56.

[71 M. Keally, G. Zhou, G. Xing, and]J. Wu, “Remora: Sensing
resource sharing among smartphone-based body sensor
networks,” in Proc. IEEE/ACM 21st Int. Symp. Quality Service, 2013,
pp- 1-10.

[8] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A link layer secu-
rity architecture for wireless sensor networks,” in Proc. 2nd Int.
Conf. Embedded Netw. Sensor Syst., 2004, pp. 162-175.

[91 G. Zhou, J. Lu, C.-Y. Wan, M. D. Yarvis, and J. A. Stankovic,
“BodyQoS: Adaptive and radio-agnostic QoS for body sensor
networks,” presented at the IEEE 27th Conf. Computer Communica-
tions, Phoenix, AZ, USA, 2008.

[10] Z. Ren, G. Zhou, A. Pyles, M. Keally, W. Mao, and H. Wang,
“BodyT2: Throughput and time delay performance assurance for
heterogeneous BSNs,” in Proc. IEEE INFOCOM, 2011,
pp. 2750-2758.

[11] A.T.Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A.
Peterson, “People-centric urban sensing,” in Proc. 2nd Annu. Int.
Workshop Wireless Internet, 2006, pp. 18-32.

[12] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G. S. Ahn,
and A. T. Campbell, “The BikeNet mobile sensing system for
cyclist experience mapping,” in Proc. ACM 5th Int. Conf. Embedded
Netw. Sensor Syst., 2007, pp. 87-101.

[13] H.Lu, N. D. Lane, S. B. Eisenman, and A. T. Campbell, “Bubble-
sensing: Binding sensing tasks to the physical world,” Pervasive
Mobile Comput., vol. 6, pp. 58-71, 2010.

[14] E. Miluzzo, N. D. Lane, A. T. Campbell, and R. Olfati-Saber,
“CaliBree: A self-calibration system for mobile sensor networks,”
in Proc. IEEE 4th Conf. Distrib. Comput. Sensor Syst., 2008,
pp- 314-331.

[15] R.]J. Honicky, “Understanding and using rendezvous to enhance
mobile crowdsourcing applications,” Computer, vol. 24, no. 6,
pp- 22-28, Jun. 2011.

[16] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the levy-walk
nature of human mobility: Do humans walk like monkeys?” pre-
sented at the IEEE 27th Conf. Computer Communications, Phoenix,
AZ, USA, 2008.

556

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “SLAW: A new
mobility model for human walks,” in Proc. IEEE INFOCOM, 2009,
pp- 855-863.

K. Lee, Y. Kim, S. Chong, I. Rhee, and Y. Yi, “Delay-capacity trade-
offs for mobile networks with Lévy walks and Lévy flights,” in
Proc. IEEE INFOCOM, 2011, pp. 3128-3136.

S. Srinivasa and S. Krishnamurthy, “CREST: An opportunistic for-
warding protocol based on conditional residual time,” in Proc.
IEEE 6th Annu. Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun.
Netw., 2009, pp. 1-9.

S. B. Eisenman, N. D. Lane, and A. T. Campbell, “Techniques for
improving opportunistic sensor networking performance,” in
Proc. IEEE 4th Int. Conf. Distrib. Comput. Sensor Syst., 2008,
pp- 157-175.

K. K. Rachuri, C. Efstratiou, I. Leontiadis, C. Mascolo, and P. J.
Rentfrow, “METIS: Exploring mobile phone sensing offloading
for efficiently supporting social sensing applications,” in Proc.
IEEE Int. Conf. Pervasive Comput. Commun., 2013, pp. 85-93.

S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, and Y. Paek,
“Fast dynamic execution offloading for efficient mobile cloud
computing,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun.,
2013, pp. 20-28.

M. A. Hanson, H. C. Powell Jr, A. T. Barth, K. Ringgenberg, B. H.
Calhoun, J. H. Aylor, and J. Lach, “Body area sensor networks:
Challenges and opportunities,” Computer, vol. 42, no. 1, pp. 58-65,
Jan. 2009.

D. K. Rout and S. Das, “Interference mitigation in wireless body
area networks using modified and modulated MHP,” Wireless
Pers. Commun., vol. 77, pp. 1-19, 2014.

S. Cui, K. Teh, K. Li, Y. Guan, and C. Law, “Narrowband interfer-
ence suppression in transmitted reference uwb systems with
inter-pulse interference,” in Proc. IEEE Int. Conf. Ultra-Wideband,
2007, pp. 895-898.

W. Gao, R. Venkatesan, and C. Li, “A pulse shape design method
for ultra-wideband communications,” in Proc. IEEE Wireless Com-
mun. Netw. Conf., 2007, pp. 2800-2805.

S. M. Ekome, G. Baudoin, M. Villegas, and]. Schwoerer,
“Narrowband interference mitigation in UWB communication
with energy detector,” in Proc. IEEE Int. Conf. Ultra-Wideband,
2012, pp. 67-71.

J. Ibrahim and R. M. Buehrer, “NBI mitigation for UWB systems
using multiple antenna selection diversity,” IEEE Trans. Veh. Tech-
nol., vol. 56, no. 4, pp. 2363-2374, Jul. 2007.

Z. Xie, G. Huang, J. He, and Y. Zhang, “A clique-based WBAN
scheduling for mobile wireless body area networks,” Procedia
Comput. Sci., vol. 31, pp. 1092-1101, 2014.

Z. Zhang, H. Wang, C. Wang, and H. Fang, “Interference mitiga-
tion for cyber-physical wireless body area network system using
social networks,” IEEE Trans. Topics Comput., vol. 1, no. 1,
pp- 121-132, Jun. 2013.

IEEE, IEEE 802.15 WPAN Task Group 6 (TG6) Body Area Net-
works [Online]. Available: http:/ /ieee802.0org/15/pub/TG6.html,
2015.

H. Jeong, “An adaptive scheduling algorithm for the patient mon-
itoring system on WBANs,” in Proc. Int. Workshop Internet Things,
2012, pp. 17-24.

J. S. Choi and J. G. Kim, “An improved MAC protocol for WBAN
through modified frame structure,” Int. . Smart Home, vol. 8,
no. 2, p. 65, 2014.

N. F. Timmons and W. G. Scanlon, “Improving the ultra-low-
power performance of IEEE 802.15. 6 by adaptive syn-
chronisation,” IET Wireless Sensor Syst., vol. 1, no. 3, pp. 161-170,
Sep. 2011.

S. Ullah, M. Mohaisen, and M. A. Alnuem, “A review of IEEE
802.15. 6 MAC, PHY, and security specifications,” Int.]. Distrib.
Sensor Netw., vol. 2013, p. 12, 2013.

1. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: A
hybrid MAC for wireless sensor networks,” IEEE/ACM Trans.
Netw., vol. 16, no. 3, pp. 511-524, Jun. 2008.

G.-5. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo,
“Funneling-MAC: A localized, sink-oriented MAC for boosting
fidelity in sensor networks,” in Proc. 4th Int. Conf. Embedded Netw.
Sensor Syst., 2006, pp. 293-306.

B. Rajagopalan, “Reliability and scaling issues in multicast
communication,” in Proc. ACM SIGCOMM Comput. Commun.
Rev., 1992, pp. 188-198.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

F. Stann and J. Heidemann, “RMST: Reliable data transport in sen-
sor networks,” in Proc. 1st Int. Workshop Sensor Netw. Protocols
Appl., 2003, pp. 102-112.

K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe,
Reno and SACK TCP,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 26, pp. 5-21, 1996.

P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire TinyOS applications,” in Proc. ACM
1st Int. Conf. Embedded Netw. Sensor Syst., 2003, pp. 126-137.

K. Gulati, A. Chopra, B. L. Evans, and K. R. Tinsley, “Statistical
modeling of co-channel interference,” in Proc. IEEE Global Telecom-
mun. Conf., 2009, pp. 1-6.

M. Z. Win, P. C. Pinto, and L. A. Shepp, “A mathematical theory
of network interference and its applications,” Proc. IEEE, vol. 97,
no. 2, pp. 205-230, Feb. 2009.

E. Salbaroli and A. Zanella, “Interference analysis in a poisson
field of nodes of finite area,” IEEE Trans. Veh. Technol., vol. 58,
no. 4, pp. 1776-1783, May 2009.

X. Yang and A. P. Petropulu, “Co-channel interference modeling
and analysis in a poisson field of interferers in wireless
communications,” in Classical, Semi-Classical Quantum Noise. New
York, NY, USA: Springer, 2012, pp. 271-282.

X. Ge, K. Huang, C.-X. Wang, X. Hong, and X. Yang, “Capacity
analysis of a multi-cell multi-antenna cooperative cellular net-
work with co-channel interference,” IEEE Trans. Wireless Com-
mun., vol. 10, no. 10, pp. 3298-3309, Oct. 2011.

Zhen Ren received the PhD degree in computer
science from the College of William and Mary in
2012. Her research interest includes wireless
communication and networking, sensor net-
works, especially body sensor networks (BSN),
ubiquitous computing, quality of service (QoS),
and voice over internet protocol (VolP).

Xin Qi received the BSc degree in computer sci-
ence from Nanjing University, China, in 2007 and
ME degree from LIAMA, a joint lab between Chi-
nese Academy of Science and INRIA, in 2010,
respectively. He is currently working toward the
PhD degree in the Department of Computer
Science, The College of William and Mary. His
research interests are mainly in Ubiquitous
computing and mobile systems.

Gang Zhou received the PhD degree from the
University of Virginia in 2007 under professor
John A. Stankovic. He is an associate professor
in the Computer Science Department, College of
William and Mary. He has published more than
60 papers in the areas of sensor networks, ubig-
uitous computing, mobile computing, and wire-
less networks. The total citations of his papers
are more than 4,300 according to Google
Scholar, among which the MobiSys04 paper has
been cited more than 780 times. He also has 13

papers each of which has been cited more than 100 times since 2004.
He is an editor of /EEE Internet of Things Journal. He is also an editor of
Elsevier Computer Networks Journal. He served as the US National Sci-
ence Foundation (NSF), NIH, and GENI proposal review panelists multi-
ple times. He also received an award for his outstanding service to the
IEEE Instrumentation and Measurement Society in 2008. He received
the Best Paper Award of IEEE ICNP 2010 and the NSF CAREER Award
in 2013. He is a senior member of the IEEE and a senior member of
the ACM.

REN ET AL.: THROUGHPUT ASSURANCE FOR MULTIPLE BODY SENSOR NETWORKS

Haining Wang received the PhD degree in
computer science and engineering from the
University of Michigan at Ann Arbor in 2003.
He is currently a professor in the Department
of Electrical and Computer Engineering,
University of Delaware, Newark, DE. His
research interests lie in the areas of security,
networking system, and cloud computing. He is
a senior member of the IEEE.

557

David T. Nguyen has been working toward the
PhD degree in computer science from the
College of William and Mary, since Fall 2011.
He is working with Dr. Gang Zhou, and his
research interests include mobile computing,
ubiquitous computing, and wireless network-
ing. Before coming to W&M (Fall 2011), he
was a lecturer at Suffolk University in Boston
for two years. He was also a lecturer at
Christopher Newport University in 2013. In
2014, he was a Mobile Hardware engineer in

Facebook’s Connectivity Lab, Menlo Park, CA.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

